

Table of Contents

1. System of Linear Equations and Matrices 1
1.1 System of Linear Equations 1
1.1.1 Introduction 1
1.1.2 Solve Systems of Linear Equations by Substitution 6
1.1.3 Solve System of linear Equations by Elimination 8
1.2 Matrices \& Elementary Row Operations 10
1.2.1 Introduction 10
1.2.2 Types of Matrices 11
1.2.3 Equality of Matrices 13
1.2.4 Elementary Row Operations 13
1.2.5 Augmented Matrix 17
1.3 Arithmetic operation on matrices 19
1.3.1 Introduction 19
1.3.2 Addition \& Subtraction 20
1.3.3 Transpose of a Matrix 22
1.3.4 Scalar Multiplication of a Matrix 23
1.3.5 Matrix Multiplication 25
1.4 Determinants 28
1.4.1 Introduction 28
1.4.2 Properties of Determinant 30
1.4.3 Minors 30
1.4.4 Cofactors 30
1.5 Inverse of a Matrix 31
1.5.1 Introduction 31
1.5.2 Computing Inverse of a Matrix using Adjoint 32
1.5.3 Computing Inverse of a Matrix using Gauss-Jordan Method 35
1.6 Solving System of Equations Using Matrices 39
1.6.1 Introduction 39
1.6.2 System of Linear Equations in Two Variables 40
1.6.3 System of Linear Equations in Three Variables 42
1.6.4 Inconsistent \& Dependent Systems 44
1.6.5 Cramer's Rule for Solving System of Linear Equations in two variables 45
1.6.6 Cramer's Rule for Solving System of Linear Equations in three variables 47
1.7 Applications of System of Linear Equations 49
1.7.1 Introduction 49
References 55
2. Probability and Statistics 56
2.1 Mathematical Treatment 57
2.1.1 Experiments, Outcome, Sample Space and Events 57
2.1.2 Operations on Events 58
2.2 Assignment of Probabilities 61
2.3 Calculation of the Probabilities of Events 71
2.3.1 Experiments with Equally possible outcomes 71
2.3.2 Complement Rule 73
2.4 Conditional and Independent Probabilities 75
2.4.1 Conditional Probability 75
2.4.2 Independent Events 77
2.5 Tree Diagrams 81
2.6 Bayes' Theorem 86
2.6.1 Bayes' Theorem for 2 events 87
2.6.2 Bayes' Theorem for 3 events 87
2.6.3 Bayes' Theorem for n events 87
2.7 Visual Representations of Data 90
2.7.1 Bar Chart 91
2.7.2 Pie Chart 92
2.7.3 Median, Quartiles, range and Interquartile range 93
2.8 Frequency, Probability Distributions and Binomial Trials 96
2.8.1 Frequency Distributions 96
2.8.2 Probability Distributions 100
2.8.3 Binomial Trials 103
2.9 Mean, Variance and Standard deviation 105
2.9.1 Mean 105
2.9.2 Expected Value 108
2.9.3 Variance 110
2.9.4 Standard Deviation 112
2.9.5 Variance and Standard Deviation of a Binomial Random Variable 113
References 116
3. Linear Programming 117
Introduction 117
3.1 Linear inequalities 119
3.2 Properties associated with linear inequalities 120
3.3 Graphing Linear Inequalities 122
3.4 Linear Programming Practical Problems 130
3.4.1 Furniture Manufacturing Problem 130
3.4.2 People's Nutrition Problems 135
3.4.3 Packaging Problems 140
3.4.4 Investments and Funds Problems 144
3.4.5 Transportation and Shipping Problems 151
References 164
4. Limits, Derivatives and Applications 165
Introduction 165
4.1 Limits 166
4.1.1 Introduction to Limits 166
4.1.2 Existence of Limits of a Function 167
4.1.3 Determining the Limits 168
4.2 Continuity 182
4.2.1 Definition 182
4.2.2 Discontinuity 185
4.2.3 Singularity 185
4.3 Derivatives 194
4.3.1 Introduction to Derivatives 194
4.3.2 Algebra of Derivatives 198
4.3.3 Differentiation of one function with respect to another Function/ Parametric Differentiation 203
4.3.4 Chain Rule 205
4.4 Differentiability 210
4.4.1 Introduction 210
4.4.2 Rolle's Theorem 214
4.4.3 Lagrange's Mean Value Theorem 216
4.5 Working with Derivatives 221
4.5.1 Derivatives of Implicit Functions 222
4.5.2 Derivative of Inverse Trigonometric Functions 223
4.5.3 Derivatives of Exponential and Logarithmic Functions 226
References 230
5. Integration 231
Introduction 231
5.1 The Indefinite Integral 232
5.1.1 Basic Integration Rules 232
5.1.2 Integral of some functions: 234
5.2 Applications of integrals 236
5.3 Methods of integration 238
5.3.1 Integration by substitution 238
5.4 Some Important Integrals of Functions 244
5.5 Integration by Partial Fractions 255
5.5.1 Form of the rational function converted into partial fraction 255
5.6 Integration by parts 258
5.6.1 Some special type of integrals 262
5.7 Definite Integral 264
5.8 Elemental Theorem of Calculus 269
5.8.1 Area Function 269
5.8.2 Using substitution method for computation of Definite Integrals 272
5.9 Properties of Definite Integral 274
5.10 Application of Integrals 281
5.10.1 Introduction 281
5.10.2 Area bounded by Simple Curves 282
5.11 Area between Two Curves 287
5.12 Some more applications of definite integrals 290
5.13 Applications in Physics and other related subjects 296
5.13.1 Fluid Force on a Vertical Surface 297
5.13.2 The Normal Probability Density Function 298
References 301
6. Differential Equations 302
6.1 First order differential equation 302
6.1.1 Order and degree of a differential equation 304
6.1.2 Method to form differential equations 305
6.2 Variable separable method 308
6.3 Solution of homogeneous differential equation 311
6.4 Linear differential equation 314
6.5 Partial derivatives 318
6.5.1 Definition 318
6.5.2 Higher Order Partial Derivative 320
6.6 Exact Differential Equation 322
6.6.1 Definition 322
6.6.2 Solution of exact differential equation 324
6.7 Second order differential equation 327
6.7.1 Linear and nonlinear differential equation 327
6.7.2 Solution of second degree differential equation 328
6.8 Solution of other types of differential equation 341
6.8.1 Differential equation of the type $\frac{d^{n} y}{d x^{n}}=f(x)$ 341
6.8.2 Differential equation of the type $\frac{d^{n} y}{d x^{n}}=f(y) \quad 342$
$\begin{array}{ll}\text { 6.8.3 } & \begin{array}{l}\text { The differential equation does not have y } \\ \text { directly }\end{array} \\ 345\end{array}$
$\begin{array}{ll}\text { 6.8.4 } & \begin{array}{l}\text { The differential equation does not have x } \\ \text { directly }\end{array} \\ 347\end{array}$
References 349
7. Mathematical Induction 350

Introduction 350
7.1 The Principle of Mathematical Induction 351

References 375
Index 376

